12X 21590 A Page 1 of 4 March 2016 HOLLAND HOUSE • QUEENS ROAD • BARNET • EN5 4DJ • ENGLAND • TEL: +44 (0)20 8441 2024 • FAX: +44 (0)20 8449 0810 email: info@mbh.co.uk web: www.mbh.co.uk # CERTIFICATE OF ANALYSIS 12X 21590 (batch A) ## **Certified Reference Material Information** Type: LOW-ALLOY STEEL TO ASTM A182, F22 (WROUGHT) Form and Size: Disc, 40mm diameter Manufactured by: Arcelor Huta, Warsaw Certified and Supplied by: MBH Analytical Ltd ## **Assigned Values** #### Percentage element by weight | Element | С | Si | S | Р | Mn | Ni | Cr | Мо | |--------------------------|-------|-------|--------|--------|-------|-------|------|-------| | Value ¹ | 0.139 | 0.211 | 0.0059 | 0.0128 | 0.457 | 0.144 | 2.10 | 0.935 | | Uncertainty ² | 0.002 | 0.004 | 0.0003 | 0.0004 | 0.005 | 0.003 | 0.02 | 0.007 | | Element | Cu | Al | Ti | V | Sn | As | Zn | N | |---------------|-------|--------|--------|--------|--------|--------|--------|--------| | Value 1 | 0.283 | 0.0202 | 0.0011 | 0.0032 | 0.0190 | 0.0091 | 0.0045 | 0.0134 | | Uncertainty 2 | 0.003 | 0.0012 | 0.0002 | 0.0002 | 0.0006 | 0.0009 | 0.0002 | 0.0006 | ## **Definitions** - The assigned values are the present best estimates of the true content for each element. Each value is a panel consensus, based on the averaged results of an interlaboratory testing programme, detailed on page 3. - The uncertainty values are generated from the 95% confidence interval derived from the wet analysis results, in combination with a statistical assessment of the homogeneity data, as described on page 2. | Certified by: MBH ANALYTICAL LIMITED | | on 13 th March 2016 | |---------------------------------------|------------|--------------------------------| | _ | C Eveleigh | _ | ## **Method of Preparation** This reference material was produced from stock commercial bar to ASTM A182 F22, UNS K21590. The bar was hot-rollled, quenched and tempered; but otherwise, the metallurgical history of the bar is unknown. #### Sampling Samples for homogeneity checks and milled samples for chemical analysis were taken from multiple positions within the batch. #### **Homogeneity** The samples were checked for lateral and batch uniformity using an optical emission spectrometer. Using the meaned data from each surface, standard deviation values were derived for each element as an indicator of any non-homogeneity (as determined for the specific sample size taken by the spectrometer). #### **Chemical Analysis** Analysis was carried out on millings taken from samples representative of the product. It was performed by a panel of laboratories mostly operating within the terms of EN ISO/IEC 17025 - 2005, using documented standard reference methods and validated by appropriate reference materials. The individual values listed overpage are the average of each analyst's results. #### **Estimation of Uncertainties** Each element certified has been analysed by several laboratories, and 95% half-width confidence intervals ($C_{(95\%)}$) for the resultant mean values have been derived by the method shown on page 3. As a separate exercise, the degree of non-homogeneity of the batch for each element has been quantified by a programme of non-destructive application testing, discussed above. The final certified uncertainty for each element has been derived by combining these two factors, using the square-root of the summed squares. ## **Traceability** Much of the analytical work performed to assess this material has been carried out by laboratories with proven competence, as indicated by their accreditation to ISO 17025. It is an implicit requirement for this accreditation that analytical work should be performed with due traceability, via an unbroken chain of comparisons, each with stated uncertainty, to primary standards such as the mole, or to nationally- or internationally-recognised reference materials. In addition, some of the results derived as part of this testing programme have traceability to NIST standards, as part of the analytical calibration or process control. ## Usage Intended use: With optical emission and X-ray fluorescence spectrometers. Recommended to method of use: Steels are generally prepared by milling, turning or grinding. However, users are recommended follow the calibration and sample preparation procedures specified by the relevant instrument manufacturer. Preparation should be the same for reference materials and the samples for test. A minimum of five consistent replicate analyses is recommended to provide the necessary sample size. Users are advised to check against possible bias between reference materials and production samples due to differences in metallurgical history, and be aware of possible interelement effects. ## **Analytical Data** #### Percentage element by weight | Sample | С | Si | S | Р | Mn | Ni | Cr | Мо | |--|--|--|--|--|--|--|----------------------------|--------------------------------------| | 1 0.1 | 1330 (| .1990 | 0.0050 | 0.0118 | 0.4458 | 0.1360 | 2.050 | 0.9245 | | 2 0.1 | 1355 (| .1990 | 0.0051 | 0.0120 | 0.4487 | 0.1381 | 2.065 | 0.9260 | | | 1364 (| .2065 | 0.0056 | 0.0122 | 0.4490 | 0.1398 | 2.070 | 0.9295 | | 4 0.1 | 1370 (| .2089 | 0.0057 | 0.0122 | 0.4510 | 0.1400 | 2.088 | 0.9300 | | 5 0.1 | 1370 (| .2090 | 0.0057 | 0.0122 | 0.4513 | 0.1401 | 2.096 | 0.9310 | | 6 0.1 | 1380 (|).2101 | 0.0057 | 0.0123 | 0.4530 | 0.1410 | 2.100 | 0.9311 | | | 1389 (| | | 0.0124 | 0.4560 | 0.1434 | 2.103 | 0.9312 | | - | | | | 0.0127 | 0.4565 | 0.1437 | 2.104 | 0.9380 | | - | | | | | 0.4603 | 0.1464 | 2.105 | 0.9385 | | | | | | | 0.4639 | 0.1470 | 2.108 | 0.9452 | | = = | | | | | 0.4660 | 0.1470 | 2.109 | 0.9466 | | | | | | | 0.4690 | 0.1479 | 2.111 | 0.9500 | | | | | | 0.0135 | 0.4692 | 0.1490 | 2.146 | | | | 1430 (| | | 0.0136 | | 0.1518 | 2.148 | | | 15 | | | 0.0065 | 0.0142 | | 0.1520 | 2.158 | | | Mean 0.1 | 1389 (| .2108 | 0.0059 | 0.0128 | 0.4569 | 0.1442 | 2.104 | 0.9351 | | Std Dev 0.0 | 0029 (| 0.0065 | 0.0004 | 0.0007 | 0.0080 | 0.0050 | 0.030 | 0.0084 | | C (95%) 0.0 | 0017 (| 0.0037 | 0.0002 | 0.0004 | 0.0049 | 0.0028 | 0.017 | 0.0053 | | Sample (| Cu | Al | Ti | V | Sn | As | Zn | N | | 1 0.2 | 2754 (| 0.0167 | 0.0007 | 0.0025 | 0.0178 | 0.0074 | 0.0041 | 0.0124 | | | | 0.0180 | | | 0.0178 | 0.0079 | 0.0043 | 0.0126 | | | 2802 (| 0.0187 | 0.0009 | 0.0026 | 0.0181 | 0.0085 | 0.0044 | 0.0128 | | 4 0.2 | 2804 (| 0.0193 | 0.0009 | 0.0028 | 0.0183 | 0.0086 | 0.0044 | 0.0128 | | - | 2805 (| 0.0194 | 0.0010 | 0.0030 | 0.0186 | 0.0087 | 0.0045 | 0.0129 | | | | | | 0.0030 | 0.0186 | 0.0087 | 0.0045 | 0.0134 | | | 2831 (| | | | | | | | | - | | | | | 0.0190 | 0.0091 | 0.0047 | 0.0136 | | - | 2836 (| 0.0203 | 0.0011 | 0.0032 | 0.0190 | 0.0092 | 0.0047
0.0047 | 0.0136
0.0142 | | | 2836 (
2839 (|).0203
).0206 | 0.0011
0.0012 | 0.0032
0.0033 | 0.0190
0.0194 | 0.0092
0.0093 | 0.0047 | 0.0136
0.0142
0.0143 | | | 2836 (
2839 (
2840 (| 0.0203
0.0206
0.0211 | 0.0011
0.0012
0.0013 | 0.0032
0.0033
0.0034 | 0.0190
0.0194
0.0196 | 0.0092
0.0093
0.0095 | 0.0047
0.0047 | 0.0136
0.0142 | | | 2836 (
2839 (
2840 (
2842 (| 0.0203
0.0206
0.0211
0.0221 | 0.0011
0.0012
0.0013
0.0013 | 0.0032
0.0033
0.0034
0.0034 | 0.0190
0.0194
0.0196
0.0197 | 0.0092
0.0093
0.0095
0.0098 | 0.0047
0.0047 | 0.0136
0.0142
0.0143 | | 12 0.2 | 2836 (2839 (2840 (2842 (2870 (| 0.0203
0.0206
0.0211
0.0221
0.0228 | 0.0011
0.0012
0.0013
0.0013
0.0015 | 0.0032
0.0033
0.0034
0.0034
0.0035 | 0.0190
0.0194
0.0196
0.0197
0.0198 | 0.0092
0.0093
0.0095
0.0098
0.0101 | 0.0047
0.0047 | 0.0136
0.0142
0.0143 | | 12 0.2
13 0.2 | 2836 (2839 (2840 (2842 (2870 (2873 (2883 (2883 (2883 (2883 (2883 (2883 (2883 (2883 (2883 (2883 (| 0.0203
0.0206
0.0211
0.0221 | 0.0011
0.0012
0.0013
0.0013
0.0015 | 0.0032
0.0033
0.0034
0.0034
0.0035
0.0036 | 0.0190
0.0194
0.0196
0.0197
0.0198
0.0203 | 0.0092
0.0093
0.0095
0.0098
0.0101
0.0101 | 0.0047
0.0047 | 0.0136
0.0142
0.0143 | | 12 0.2
13 0.2
14 0.2 | 2836 (2839 (2840 (2842 (2870 (| 0.0203
0.0206
0.0211
0.0221
0.0228 | 0.0011
0.0012
0.0013
0.0013
0.0015 | 0.0032
0.0033
0.0034
0.0034
0.0035
0.0036 | 0.0190
0.0194
0.0196
0.0197
0.0198 | 0.0092
0.0093
0.0095
0.0098
0.0101 | 0.0047
0.0047 | 0.0136
0.0142
0.0143 | | 12 0.2
13 0.2
14 0.2
15 0.2 | 2836 (2839 (2840 (2842 (2870 (2873 (2881 (2882 (2882 (2882 (2882 (2882 (2883 (2882 (2883 (| 0.0203
0.0206
0.0211
0.0221
0.0228
0.0236 | 0.0011
0.0012
0.0013
0.0013
0.0015 | 0.0032
0.0033
0.0034
0.0034
0.0035
0.0036
0.0038 | 0.0190
0.0194
0.0196
0.0197
0.0198
0.0203 | 0.0092
0.0093
0.0095
0.0098
0.0101
0.0101 | 0.0047
0.0047 | 0.0136
0.0142
0.0143 | | 12 0.2
13 0.2
14 0.2
15 0.2
Mean 0.2 | 2836 (2839 (2840 (2842 (2870 (2873 (2881 (2882 (2831 (| 0.0203
0.0206
0.0211
0.0221
0.0228
0.0236 | 0.0011
0.0012
0.0013
0.0013
0.0015 | 0.0032
0.0033
0.0034
0.0034
0.0035
0.0036
0.0038
0.0038 | 0.0190
0.0194
0.0196
0.0197
0.0198
0.0203
0.0204 | 0.0092
0.0093
0.0095
0.0098
0.0101
0.0101
0.0111 | 0.0047
0.0047
0.0051 | 0.0136
0.0142
0.0143
0.0149 | Note: $C_{(95\%)}$ is the 95% half-width confidence interval derived from the equation: $C_{(95\%)} = (t \times SD)/\sqrt{n}$ where n is the number of available values, t is the Student's t value for n-1 degrees of freedom, and SD is the standard deviation of the test results. #### **Participating Laboratories** Exova Ltd Sheffield Assay Office Metals Technology (Testing) Ltd Universal Scientific Laboratory Pty Ltd Genitest, Inc Shanghai Jinyi Test Technology Co Shandong Metallurgical & Science Research Raghavendra Spectromet Laboratory Bureau Veritas CPS Pvt TCR Engineering Services Ltd Tec-Eurolab Instytut Metalurgii Zelaza Mineral & Metallurgical Laboratories Coleshill Laboratories Ltd AMG Superalloys UK Ltd Analyticka Laborator Lithea, sro Middlesbrough, England Sheffield, England Sheffield, England Milperra, NSW, Australia Montreal, Canada Shanghai, China Jinan, Shandong, China Bangalore, India Chennai, India Mumbai, India Campogalliano, Italy Gliwice, Poland Bangalore, India Birmingham, England Rotherham, England UKAS accreditation 0239 UKAS accreditation 0012 UKAS accreditation 0963 NATA accreditation 0492 PRI accreditation 123077 CNAL accreditation 0783 CNAS accreditation 1461 NABL accreditation 0371 NABL accreditation 0025 NABL accreditation 0367 ACCREDIA accreditation 52 PCA accreditation AB554 Note: to achieve the above accreditation (UKAS, NATA, etc), test houses are required to demonstrate conformity to the general requirements of EN ISO/IEC 17025. Brno, Czech Republic #### **Analytical Methods Used** | ELEMENT | RESULT No. & METHOD | | | | | | | | |------------|--------------------------|-------------|------------|---|--|--|--|--| | | ICP-AES | FAAS | | OTHER | | | | | | Carbon | - | - | all | combustion (IR or volumetric detection) | | | | | | Silicon | 1, 2, 6, 7, 11, 13, 14 | - | 3-5, 8 | gravimetric (perchloric acid) | | | | | | | | | 9, 10, 12 | photometric (molybdenum blue) | | | | | | Sulfur | 6 | - | 1-5, 7-15 | combustion (IR or volumetric detection) | | | | | | Phosphorus | 1-3, 6, 7, 9, 10, 14, 15 | - | 4, 8, 13 | photometric (molybdenum blue) | | | | | | | | | 5, 11, 12 | volumetric (alkalimetric) | | | | | | Manganese | 1, 2, 5, 6, 9-12 | 13 | 3, 8 | photometric (periodate) | | | | | | | | | 4, 7 | volumetric (arsenite) | | | | | | Nickel | 1-3, 5, 7-9, 12, 14, 15 | 6, 10, 11 | 4 | gravimetric (dimethyl glyoxime) | | | | | | | | | 13 | photometric (dimethyl glyoxime) | | | | | | Chromium | 1, 3-5, 8, 9, 12-14 | 6, 11 | 2, 7, 15 | volumetric (ferrous ammonium sulfate) | | | | | | | | | 10 | photometric (diphenyl carbazide) | | | | | | Molybdenum | 6, 8-12 | 1, 4 | 2, 3, 5, 7 | photometric (thiocyanate) | | | | | | Copper | 4, 5, 7, 9-11, 13-15 | 1, 3, 8 | 2, 12 | photometric (BCO) | | | | | | | | | 6 | volumetric (thiosulfate) | | | | | | Aluminium | 2, 3, 5, 6, 9, 12, 13 | 1, 4, 7, 11 | 8 | volumetric (EDTA) | | | | | | | | | 10 | photometric (chrome azurol S) | | | | | | Titanium | 1-5, 7-10 | 6, 11 | 12 | photometric (diantipyryl methane) | | | | | | Vanadium | 2-6, 8-10, 12-15 | 1, 7, 11 | | | | | | | | Tin | 1, 2, 4, 6-8, 10-13 | 3, 5, 9 | 14 | gravimetric (oxide) | | | | | | Arsenic | 1, 2, 5-14 | 3, 4 | | | | | | | | Zinc | 1-5, 7 | 6, 8, 9 | | | | | | | | Nitrogen | - | - | 1, 3 | photometric (Nessler reagent) | | | | | | | | | 2, 4-7, 10 | inert gas fusion (thermal conductivity) | | | | | | | | | 8, 9 | volumetric (hydrochloric acid) | | | | | #### Notes This Certified Reference Material has been produced and certified in accordance with the requirements of ISO Guide 34-2009, ISO Guide 31-2015 and ISO Guide 35-2006, taking into account the requirements of the ISO Guide to the Expression of Uncertainty in Measurement (GUM). This certification is applicable to the whole of the disc. However, in accordance with normal practice for emission spectrometry, it is appropriate to avoid usage of the central portion, \sim 6 mm diameter. This material will remain stable indefinitely, provided adequate precautions are taken to protect it from cross-contamination, extremes of temperature and atmospheric moisture. All testing records will be retained for a period of 20 years from the date of this certificate. Technical support for this certification will therefore expire in March 2036, although we reserve the right to make changes as issue revisions, in the intervening period. This material is also available in the form of chippings. The analysis and certification of this product were supervised by C Eveleigh, PhD, Technical Director, MBH Analytical Ltd. The material to which this certificate of analysis refers is supplied subject to our general conditions of sale.