

HOLLAND HOUSE • QUEENS ROAD • BARNET • EN5 4DJ • ENGLAND • TEL: +44 (0)20 8441 2024 • FAX: +44 (0)20 8449 0810 email: info@mbh.co.uk web: www.mbh.co.uk

CERTIFICATE OF ANALYSIS

511X G6262 (batch B)

Certified Reference Material Information

Type: ALUMINIUM / MAGNESIUM (WROUGHT)

Form and Size: Disc, ~50mm diameter

Produced by: Stock bar

Certified and Supplied by: MBH Analytical Ltd

Assigned Values

Percentage element by weight

Element	Cu	Mg	Si	Fe	Mn	Ni
Value 1	0.243	0.829	0.557	0.329	0.0737	0.0034
Uncertainty ²	0.003	0.008	0.009	0.006	0.0018	0.0004

Element	Zn	Pb	Sn	Bi	Ti	Cr
Value ¹	0.0209	0.499	(0.0012)	0.424	0.0194	0.0666
Uncertainty ²	0.0008	0.006	-	0.006	0.0009	0.0012

Notes: values given in parentheses are not certified - they are provided for information only.

Definitions

- The certified values are the present best estimates of the true content for each element. Each value is a panel consensus, based on the averaged results of an interlaboratory testing programme, detailed on page 3.
- The uncertainty values are generated from the 95% confidence interval derived from the wet analysis results, in combination with a statistical assessment of the homogeneity data, as described on page 2.

Ce	 •			
	 	\sim	b	
	 		111	, -
	 	-	\sim	, .

		on 3rd November 2011
MBH ANALYTICAL LIMITED _		<u></u>
	C Eveleigh	

Method of Preparation

This reference material was produced by slicing a single length of commercial barstock to alloy designation 6262, into discs of 20mm length. 6262 is a free-machining alloy: this sample has been wrought and subjected to T6 heat-treatment.

Sampling

Samples for chemical analysis were taken from various positions throughout the bar. Approximately 8% of all discs were selected for non-destructive homogeneity testing.

Homogeneity

The discs were checked for sample and batch uniformity using an optical emission spectrometer.

Using the combined data for each surface, standard deviation values were derived for each element as an indicator of any non-homogeneity (as determined for the specific sample size taken by the spectrometer).

Chemical Analysis

Analysis was carried out on millings taken from samples representative of the product. It was performed by a panel of laboratories mostly operating within the terms of EN ISO/IEC 17025 - 2005, using documented standard reference methods and validated by appropriate reference materials. The individual values listed overpage are the average of each analyst's results.

Estimation of Uncertainties

Each element certified has been analysed by several laboratories, and 95% half-width confidence intervals ($C_{(95\%)}$) for the resultant mean values have been derived by the method shown on page 3.

As a separate exercise, the degree of non-homogeneity of the batch for each element has been quantified by a programme of non-destructive application testing, discussed above.

The final certified uncertainty for each element has been derived by combining these two factors, using the square-root of the summed squares.

Traceability

Much of the analytical work performed to assess this material has been carried out by laboratories with proven competence, as indicated by their accreditation to ISO 17025. It is an implicit requirement for this accreditation that analytical work should be performed with due traceability, via an unbroken chain of comparisons, each with stated uncertainty, to primary standards such as the mole, or to nationally- or internationally-recognised reference materials. In addition, some of the results derived as part of this testing programme have traceability to NIST standards, as part of the analytical calibration or process control.

<u>Usage</u>

Intended use: With optical emission and X-ray fluorescence spectrometers.

Recommended method of use:

Aluminium alloys are generally prepared by machining on a mill or a lathe. However, users are recommended to follow the calibration and sample preparation procedures specified by the relevant instrument manufacturer.

Preparation should be the same for reference materials and the samples for test.

A minimum of five consistent replicate analyses is recommended to provide the necessary sample size. Users are advised to check against possible bias between reference materials and production samples due to differences in metallurgical history, and be aware of possible inter-element effects.

Analytical Data

Percentage element by weight

Sample	Cu	Mg	Si	Fe	Mn	Ni
1	0.235	0.810	0.541	0.324	0.0700	0.0022
2	0.235	0.818	0.542	0.324	0.0706	0.0029
3	0.238	0.820	0.544	0.325	0.0708	0.0029
4	0.239	0.820	0.544	0.326	0.0714	0.0031
5	0.240	0.820	0.544	0.327	0.0716	0.0031
6	0.240	0.830	0.560	0.328	0.0725	0.0032
7	0.241	0.837	0.564	0.328	0.0735	0.0032
8	0.246	0.838	0.566	0.329	0.0747	0.0035
9	0.247	0.841	0.567	0.329	0.0749	0.0036
10	0.248	0.841	0.572	0.329	0.0750	0.0039
11	0.249	0.845	0.579	0.331	0.0757	0.0041
12	0.250			0.333	0.0759	0.0042
13	0.250			0.335	0.0760	0.0044
14				0.339	0.0767	
15					0.0767	
Mean	0.243	0.829	0.557	0.329	0.0737	0.0034
Std Dev	0.006	0.012	0.014	0.004	0.0024	0.0006
C _(95%)	0.003	0.008	0.009	0.002	0.0013	0.0004
Sample	Zn	Pb	Sn	Bi	Ti	Cr
1	0.0188	0.488	0.0005	0.416	0.0177	0.0637
2	0.0191	0.489	0.0005	0.417	0.0179	0.0648
3	0.0192	0.490	0.0009	0.417	0.0183	0.0658
4	0.0199	0.492	0.0009	0.419	0.0185	0.0661
5	0.0199	0.495	0.0010	0.420	0.0186	0.0662
6	0.0200	0.498	0.0015	0.422	0.0187	0.0663
7	0.0208	0.498	0.0018	0.423	0.0188	0.0665
8	0.0212	0.498	0.0018	0.425	0.0191	0.0677
9	0.0215	0.501	0.0020	0.425	0.0194	0.0678
10	0.0221	0.505		0.429	0.0195	0.0691
11	0.0222	0.505		0.429	0.0208	0.0691
12	0.0223	0.506		0.429	0.0210	
13	0.0228	0.509		0.436	0.0210	
14	0.0230	0.510			0.0218	
Mean	0.0209	0.499	0.0012	0.424	0.0194	0.0666
Std Dev	0.0014	0.007	0.0006	0.006	0.0013	0.0017
C _(95%)	0.0008	0.004	0.0004	0.004	0.0007	0.0011

Note: $C_{(95\%)}$ is the 95% half-width confidence interval derived from the equation:

 $C_{(95\%)} = (t \times SD)/\sqrt{n}$

where n is the number of available values, t is the Student's t value for n-1 degrees of freedom, and SD is the standard deviation of the test results.

Participating Laboratories

Universal Scientific Laboratory Pty Ltd Laboratory Testing, Inc Genitest, Inc Institute of Iron & Steel Technology Luo Yang Copper South-West Aluminium Group Sargam Metals Pvt Ltd

Shriram Institute for Industrial Research Raghavendra Spectromet Laboratory Institute of Non-Ferrous Metals London & Scandinavian Met Co De Bruyn Spectroscopic Solutions Ltd

Coleshill Laboratories Ltd

Exova Ltd

Middlesbrough, England
Milperra, NSW, Australia
Hatfield, PA, USA
Montreal, Canada
Shanghai, China
Luo Yang, He Nan, China
Jiulong Puo, Sichuan, China
Chennai, India
Delhi, India
Bangalore, India
Gliwice, Poland

Rotherham, England Johannesburg, South Africa Birmingham, England UKAS accreditation 0239
NATA accreditation 0492
A2LA accreditation 0117
PRI accreditation 123077
CNAL accreditation 0783
CNAL accreditation 0173
CNAL accreditation T007
NABL accreditation 0025
NABL accreditation 0045
NABL accreditation 0371
PCA accreditation AB274

Note: to achieve the above accreditation (eg UKAS, NATA, etc), test houses must demonstrate conformity to the general requirements of EN ISO/IEC 17025.

Analytical Methods Used

ELEMENT	RESULT No. & METHOD					
	ICP-AES	FAAS		OTHER		
Copper	1, 4, 6-8, 10-12	2, 3, 5, 9, 13				
Magnesium	5-8, 10, 11	1, 2, 4, 9	3	volumetric (EDTA)		
Silicon	1, 9, 11	-	2, 5, 7, 10	gravimetric (perchloric acid)		
			3, 4, 6, 8	photometric (molybdenum blue)		
Iron	2, 4, 5, 8-10, 12, 14	3, 6, 7, 13	1, 11	photometric (orthophenanthroline)		
Manganese	2, 5, 8-15	3, 6, 7	1, 4	photometric (periodate)		
Nickel	2-7, 10, 11, 13	1, 8, 9, 12				
Zinc	1, 2, 4, 5, 7, 8, 11-14	3, 6, 9, 10				
Lead	2, 4-7, 9-14	1, 3, 8				
Tin	2, 4-7	1	3	ICP-MS		
			8, 9	photometric (phenylfluorone)		
Bismuth	3, 5, 8-13	1, 2, 4, 6	7	photometric (Brucine)		
Titanium	1-3, 6, 7, 9-11, 14	8, 13	4, 5, 12	photometric (di-antipyryl		
				methane)		
Chromium	1, 2, 4, 5, 7, 8, 10, 11	3, 6, 9				

Notes

This Certified Reference Material has been tested and certified in accordance with the requirements of ISO Guide 34-2009, ISO Guide 31-2000 and ISO Guide 35-2006, taking into account the requirements of the ISO Guide to the Expression of Uncertainty in Measurement (GUM).

This certification is applicable to the whole of the disc. However, in accordance with normal practice for OES, it is appropriate to avoid usage of the central portion of approx 8mm diameter.

This material is liable to superficial oxidation. However, it will otherwise remain stable provided adequate precautions are taken to protect it from cross-contamination, extremes of temperature and atmospheric moisture. All production records will be retained for a period of 20 years from the date of original analysis. This certification will therefore expire in November 2031, although we reserve the right to make changes as issue revisions, in the intervening period.

This sample is also available in the form of chippings.

The testing, analysis and certification of this product were supervised by C Eveleigh, PhD, Technical Director, MBH Analytical Ltd.

The material to which this certificate of analysis refers is supplied subject to our general conditions of sale.