74X HB G Page 1 of 4 September 2009

HOLLAND HOUSE • QUEENS ROAD • BARNET • EN5 4DJ • ENGLAND • TEL: +44 (0)20 8441 2024 • FAX: +44 (0)20 8449 0810 email: info@mbh.co.uk web: www.mbh.co.uk

CERTIFICATE OF ANALYSIS

74X HB (batch G)

Certified Reference Material Information

Type: TIN-BASE LEAD-FREE SOLDER (CAST)

Form and Size: Disc 40mm Diameter x 15mm Thickness

Manufactured by: MBH Analytical Ltd

Certified and Supplied by: MBH Analytical Ltd

Assigned Values

Percentage element by weight

Element	Cu	Ag	Pb	Sb	Bi	Zn	Cd
Value ¹	4.49	0.086	0.056	4.81	0.038	(0.02)	0.0103
Uncertainty ²	0.05	0.002	0.002	0.04	0.002	-	0.0005

Element	Ni	Fe	As	Se	Al	In	Р
Value ¹	1.22	0.0138	0.045	0.0038	(0.0026)	0.0179	(0.002)
Uncertainty ²	0.03	0.0010	0.003	0.0004	-	0.0009	-

Note: values given in parentheses are not certified - they are provided for information only

Definitions

- The certified values are the present best estimates of the true content for each element. Each value is a panel consensus, based on the averaged results of an interlaboratory testing programme, detailed on page 3.
- The uncertainty values are generated from the 95% confidence interval derived from the wet analysis results, in combination with a statistical assessment of the homogeneity data, as described on page 2.

Certified by:			
			0
MBH	ANALYTICAL LII	MITED	

on 25th September 2009

C Eveleigh

Method of Preparation

This reference material was produced from commercial tin; the major alloys and traces were added as single elements or as master alloys. The melt was cast by sequential transfer of aliquots into individual iron moulds. 2mm has been removed from the working face to minimise any surface effects.

Sampling

Samples for chemical analysis were taken from various positions throughout the casting process. At least 10% of all discs were selected for non-destructive homogeneity testing.

Homogeneity

The discs were checked for sample and batch uniformity using an optical emission spectrometer.

Using the meaned data from each surface, standard deviation values were derived for each element as an indicator of any non-homogeneity (as determined for the specific sample size taken by the spectrometer).

Chemical Analysis

Analysis was carried out on turnings taken from samples representative of the product. It was performed by participating laboratories mostly operating within the terms of EN ISO/IEC 17025 - 2005, using documented standard methods of analysis.

The individual values listed overpage are the average of each analyst's results.

Estimation of Uncertainties

Each element certified has been analysed by several laboratories, and 95% half-width confidence intervals (C_(95%)) for the resultant mean values have been derived by the method shown on page 3.

As a separate exercise, the degree of non-homogeneity of the batch for each element has been quantified by a programme of non-destructive application testing, discussed above.

The final certified uncertainty for each element has been derived by combining these two factors, using the square-root of the summed squares.

Traceability

Much of the analytical work performed to assess this material has been carried out by laboratories with proven competence, as indicated by their accreditation to ISO 17025. It is an implicit requirement for this accreditation that analytical work should be performed with due traceability, via an unbroken chain of comparisons, each with stated uncertainty, to primary standards such as the mole, or to nationally- or internationally-recognised reference materials. In addition, some of the results derived as part of this testing programme have traceability to NIST standards, as part of the analytical calibration or process control.

Usage

Intended use: With optical emission and X-ray fluorescence spectrometers.

Recommended method of use:

Tin is generally prepared by machining on a lathe. However, users are recommended to follow the calibration and sample preparation procedures specified by the relevant instrument manufacturer.

Preparation should be the same for reference materials and the samples for test.

A minimum of five consistent replicate analyses is recommended to provide the necessary sample size. Users are advised to check against possible bias between reference materials and production samples due to differences in metallurgical history, and be aware of possible inter-element effects.

Analytical Data

Percentage element by weight

Sample	Cu	Ag	Pb	Sb	Bi	Zn	Cd
1	4.422	0.0817	0.0508	4.701	0.0327	0.0168	0.0089
2	4.436	0.0822	0.0514	4.722	0.0340	0.0177	0.0095
3	4.452	0.0840	0.0528	4.722	0.034	0.0178	0.0096
4	4.46	0.0842	0.0550	4.75	0.0351	0.0199	0.0098
5	4.471	0.0843	0.0558	4.780	0.0367	0.0224	0.0099
6	4.475	0.0863	0.0568	4.812	0.038	0.0238	0.0100
7	4.482	0.087	0.057	4.815	0.0389	0.0244	0.0105
8	4.512	0.0870	0.058	4.848	0.0394	0.0245	0.0106
9	4.52	0.088	0.0587	4.852	0.0394	0.0247	0.0106
10	4.520	0.0895	0.0594	4.861	0.0399	0.0251	0.0109
11	4.566	0.0905	0.0601	4.885	0.0400		0.0110
12	4.583			4.898	0.040		0.0111
13				4.912	0.0421		0.0116
Mean	4.49	0.0858	0.056	4.81	0.038	0.022	0.0103
Std Dev	0.05	0.0029	0.003	0.07	0.003	0.003	0.0008
C _(95%)	0.03	0.0019	0.002	0.04	0.002	0.002	0.0005
Sample	Ni	Fe	As	Se	Al	In	P
1	1.161	0.0112	0.0400	0.0031	0.0015	0.0154	0.0012
2	1.173	0.013	0.0400	0.0033	0.0016	0.0167	0.0013
3	1.188	0.0132	0.0430	0.0035	0.0019	0.017	0.0015
4	1.202	0.0135	0.0448	0.0038	0.0020	0.0178	0.0022
5	1.232	0.0137	0.0452	0.0040	0.0025	0.0180	0.0030
6	1.232	0.0139	0.0458	0.0043	0.0030	0.0184	0.0030
7	1.238	0.0142	0.0462	0.0043	0.0032	0.0185	0.0038
8	1.242	0.0144	0.0478	0.0044	0.0038	0.0186	0.0048
9	1.25	0.0148	0.048		0.0041	0.0187	
10	1.25	0.0148				0.0200	
11		0.0150					
Mean	1.216	0.0138	0.045	0.0038	(0.0026)	0.0179	(0.0023)
Std Dev	0.033	0.0011	0.003	0.0005	-	0.0013	-
C _(95%)	0.024	0.0007	0.002	0.0004	-	0.0009	-

Note: $C_{(95\%)}$ is the 95% half-width confidence interval derived from the equation:

 $C_{(95\%)} = (t \times SD)/\sqrt{n}$

where n is the number of available values, t is the Student's t value for n-1 degrees of freedom, and SD is the standard deviation of the test results.

Participating Laboratories

Bodycote Materials Testing
Sheffield Assay Office
Genitest, Inc
Universal Scientific Laboratory Pty Ltd
Institute of Iron & Steel Technology
Luo Yang Copper
Institute of Non-Ferrous Metals
TCR Engineering Services Ltd
Sargam Metals Pvt Ltd
AIM Metals and Alloys LP
Raghavendra Spectromet Laboratory
London & Scandinavian Met Co
Laboratory Inppamet

Middlesbrough, England Sheffield, England Montreal, Canada Milperra, NSW, Australia Shanghai, China Luo Yang, He Nan, China Gliwice, Poland Mumbai, India Chennai, India Montreal, Canada Bangalore, India Rotherham, England Calama, Chile UKAS accreditation 0239 UKAS accreditation 0012 PRI accreditation 123077 NATA accreditation 0492 CNAL accreditation 0783 CNAL accreditation 0173 PCA accreditation AB274 NABL accreditation 0367 NABL accreditation 0025 SGS compliance to 17025

Note: to achieve the above accreditation (UKAS, PRI, etc), test houses must demonstrate conformity to the general requirements of EN ISO/IEC 17025.

Analytical Methods Used

ELEMENT		RESUL1	ΓNo. & METHO	<u>D</u>
	ICP-AES	FAAS		OTHER
Copper	2, 5, 7, 10-12	1, 3, 4, 6	8, 9	volumetric (thiosulfate)
Silver	1, 3, 4, 8, 10, 11	2, 5-7, 9		·
Lead	2, 3, 6-9	1, 4, 5, 10, 11		
Antimony	1, 8, 11, 13	2-4, 6, 10, 12	5, 7, 9	volumetric (bromate)
Bismuth	1, 3, 6, 9-11	2, 4, 5, 8, 13	7, 12	photometric (iodide)
Zinc	4, 7-9	1-3, 5, 6, 10		ICP-MS
Cadmium	2-4, 6, 11, 12	1, 5, 7-10, 13		
Nickel	1-5, 8	6, 7, 9, 10		
Iron	1, 6-8, 11	3, 5, 9, 10	2, 4	photometric (orthophenanthroline)
Arsenic	1, 2, 4, 5	3, 6, 8	7, 9	photometric (molybdenum blue)
Selenium	1-3, 5, 7	6, 8	4	ICP-MS
Aluminium	2, 4-6, 8, 9	1, 7	3	photometric (chrome azurol S)
Indium	1-3, 6-8, 10	4, 5, 9		
Phosphorus	2-7	-	1	ICP-MS
			8	volumetric (alkalimetric)

Notes

This Certified Reference Material has been produced and certified in accordance with the requirements of ISO Guide 34-2000, ISO Guide 31-2000 and ISO Guide 35-2006, taking into account the requirements of the ISO Guide to the Expression of Uncertainty in Measurement (GUM).

The unidirectional solidification effects associated with semi-chill casting have led to segregation and inhomogeneity in the rear portion of the disc. The above certification is therefore only applicable from the working face of the disc to a depth of 10mm. Material on the engraved side of the disc, to a depth of ~5mm, is not certified.

This material is liable to superficial corrosion, and there is some possibility of microstructural changes due to recrystallisation; however, it will otherwise remain stable indefinitely, provided adequate precautions are taken to protect it from cross-contamination, extremes of temperature and atmospheric moisture. All production records will be retained for a period of 20 years from the date of analysis. This certification will therefore expire in September 2029, although we reserve the right to make changes as issue revisions, in the intervening period.

The zinc in this sample is not distributed homogeneously.

This sample is also available in the form of chippings.

The manufacture, analysis and certification of this product were supervised by C Eveleigh, PhD, Technical Director, MBH Analytical Ltd.

The material to which this certificate of analysis refers is supplied subject to our general conditions of sale.