

83X PR2 G Page 1 of 4 December 2015

HOLLAND HOUSE • QUEENS ROAD • BARNET • EN5 4DJ • ENGLAND • TEL: +44 (0)20 8441 2024 • FAX: +44 (0)20 8449 0810 email: info@mbh.co.uk web: www.mbh.co.uk

CERTIFICATE OF ANALYSIS

83X PR2 (batch G)

Certified Reference Material Information

Type: LEAD WITH IMPURITIES (CAST)

Form and Size: Disc ~40mm diameter

Produced by: Universal Scientific Laboratory, Australia

Certified and supplied by: MBH Analytical Ltd

Assigned Values

Percentage element by weight

Element	Sn	Sb	Bi	Cu	Cd	Ag	As	Ni
Value ¹	0.0948	0.0499	0.0404	0.0309	0.0020	0.055	0.0233	0.0006
Uncertainty 2	0.003	0.0009	0.0007	0.0010	0.0001	0.002	0.0008	0.0001

Element	Au	ln	Se	Те	Zn	Na	TI	Hg
Value ¹	0.0005	0.0010	0.0005	0.0100	0.0005	0.0013	(0.0017)	0.003
Uncertainty ²	0.0001	0.0001	0.0001	0.0006	0.0001	0.0003	-	0.001

Note: values given in parentheses are not certified - they are provided for information only.

Definitions

- The certified values are the present best estimates of the true content for each element. Each value is a panel consensus, based on the averaged results of an interlaboratory testing programme, detailed on page 3.
- The uncertainty values are generated from the 95% confidence interval derived from the wet analysis results, in combination with a statistical assessment of the homogeneity data, as described on page 2.

<u>Cer</u>	tifi	<u>ied</u>	by	/ :
			_	

MBH ANALYTICAL LIMITED_		on 15 th December 2015
	C Eveleigh	

Method of Preparation

This reference material was produced from commercial-purity lead; the trace elements were added as single elements or as binary alloys. The melt was cast by sequential transfer of aliquots into iron moulds. 2mm has been removed from the working face to minimise any surface effects.

Sampling

Samples for chemical analysis were taken from various positions throughout the casting process. Approximately 10% of all discs were selected for non-destructive homogeneity testing.

Homogeneity

The discs were checked for sample and batch uniformity using an optical emission spectrometer.

Using the combined data for each surface, standard deviation values were derived for each element as an indicator of any non-homogeneity (as determined for the specific sample size taken by the spectrometer).

Chemical Analysis

Analysis was carried out on millings taken from samples representative of the product. It was performed by a panel of laboratories mostly operating within the terms of EN ISO/IEC 17025 - 2005, using documented standard reference methods and validated by appropriate reference materials.

The individual values listed overpage are the average of each analyst's results.

Estimation of Uncertainties

Each element certified has been analysed by several laboratories, and 95% half-width confidence intervals ($C_{(95\%)}$) for the resultant mean values have been derived by the method shown on page 3.

As a separate exercise, the degree of non-homogeneity of the batch for each element has been quantified by a programme of non-destructive application testing, discussed above.

The final certified uncertainty for each element has been derived by combining these two factors, using the square-root of the summed squares.

Traceability

Much of the analytical work performed to assess this material has been carried out by laboratories with proven competence, as indicated by their accreditation to ISO 17025. It is an implicit requirement for this accreditation that analytical work should be performed with due traceability, via an unbroken chain of comparisons, each with stated uncertainty, to primary standards such as the mole, or to nationally- or internationally-recognised reference materials. In addition, some of the results derived as part of this testing programme have traceability to NIST standards, as part of the analytical calibration or process control.

Usage

Intended use: With optical emission and X-ray fluorescence spectrometers.

Recommended method of use:

Lead and its alloys are generally prepared by machining on a lathe. However, users are recommended to follow the calibration and sample preparation procedures specified by the relevant instrument manufacturer.

Preparation should be the same for reference materials and the samples for test.

A minimum of five consistent replicate analyses is recommended to provide the necessary sample size. Users are advised to check against possible bias between reference materials and production samples due to differences in metallurgical history, and be aware of possible inter-element effects.

Analytical Data

Percentage element by weight

Sample	Sn	Sb	Bi	Cu	Cd	Ag	As	Ni
1	0.0889	0.0478	0.0379	0.0286	0.00170	0.0522	0.0207	0.00041
2	0.0917	0.0483	0.0389	0.0287	0.00172	0.0524	0.0218	0.00047
3	0.0937	0.0485	0.0396	0.0289	0.00187	0.0525	0.0220	0.00050
4	0.0938	0.0488	0.0397	0.0292	0.00190	0.0526	0.0221	0.00050
5	0.0949	0.0489	0.0401	0.0293	0.00190	0.0533	0.0221	0.00050
6	0.0954	0.0492	0.0401	0.0293	0.00198	0.0542	0.0227	0.00050
7	0.0954	0.0495	0.0403	0.0302	0.00198	0.0544	0.0230	0.00052
8	0.0956	0.0495	0.0403	0.0306	0.00200	0.0550	0.0230	0.00053
9	0.0991	0.0495	0.0404	0.0312	0.00200	0.0552	0.0231	0.00058
10	0.0996	0.0510	0.0404	0.0313	0.00200	0.0559	0.0233	0.00060
11		0.0510	0.0406	0.0313	0.00203	0.0565	0.0239	0.00060
12		0.0519	0.0415	0.0318	0.00210	0.0574	0.0243	0.00060
13		0.0523	0.0418	0.0328	0.00212	0.0577	0.0246	0.00060
14		0.0529	0.0421	0.0332	0.00220 0.00220		0.0249 0.0253	0.00060
15			0.0426	0.0337 0.0338	0.00220		0.0253	0.00063 0.00069
16								
Mean	0.0948	0.0499	0.0404	0.0309	0.00200	0.0546	0.0233	0.00055
Std Dev	0.0032	0.0016	0.0012	0.0018	0.00016	0.0019	0.0014	0.00007
C _(95%)	0.0023	0.0009	0.0007	0.0010	0.00009	0.0012	0.0008	0.00004
Sample	Au	In	Se	Te	Zn	Na	TI	Hg
1	0.00040	0.00078	0.00043	0.00940	0.00030	0.0009	0.0009	0.0022
2	0.00040	0.00076	0.00043	0.00980	0.00033	0.0000	0.0009	0.0022
3	0.00040	0.00087	0.00050	0.00990	0.00033	0.0010	0.0011	0.0028
4	0.00047	0.00090	0.00050	0.00994	0.00043	0.0012	0.0012	0.0028
5	0.00050	0.00100	0.00050	0.01000	0.00048	0.0013	0.0013	0.0031
6	0.00053	0.00100	0.00052	0.01010	0.00055	0.0014	0.0015	0.0031
7	0.00060	0.00100	0.00053	0.01011	0.00060	0.0015	0.0020	0.0046
8	0.00061	0.00102	0.00055	0.01030	0.00060	0.0016	0.0020	0.0047
9	0.00074	0.00110	0.00060	0.01060	0.00063	0.0020	0.0020	
10		0.00110	0.00063		0.00066		0.0021	
11		0.00110	0.00064		0.00070		0.0023	
12		0.00114	0.00070		0.00070		0.0024	
13					0.00080		0.0027	
Mean	0.00052	0.00099	0.00055	0.01002	0.00055	0.0013	0.0017	0.0033
Std Dev	0.00012	0.00012	0.00008	0.00033	0.00016	0.0003	0.0006	0.0009
C _(95%)	0.00009	0.00007	0.00005	0.00026	0.00010	0.0003	0.0004	0.0008
O (95 /8)								

Note: $C_{(95\%)}$ is the 95% half-width confidence interval derived from the equation:

 $C_{(95\%)} = (t \times SD)/\sqrt{n}$

where n is the number of available values, t is the Student's t value for n-1 degrees of freedom, and SD is the standard deviation of the test results.

Participating Laboratories

Sheffield Analytical Services
Anchorcert Analytical
Universal Scientific Laboratory Pty Ltd
Genitest, Inc
Shanghai Jinyi Test Tech Co
Luo Yang Copper
Bureau Veritas CPS Pvt Ltd
Raghavendra SpectroMet Laboratory
Institute of Non-Ferrous Metals
Tec-Eurolab
AMG Superalloys UK Ltd
Coleshill Laboratories Ltd
AIM Metals and Alloys LP
Laboratory Inppamet
Analyticka Laborator Lithea sro

Sheffield, England
Birmingham, England
Milperra, NSW, Australia
Montreal, Canada
Shanghai, China
Luo Yang, He Nan, China
Chennai, India
Bangalore, India
Gliwice, Poland
Campogalliano, Italy
Rotherham, England
Coleshill, England
Montreal, Canada
Calama, Chile
Brno, Czech Republic

UKAS accreditation 0012
UKAS accreditation 0667
NATA accreditation 0492
PRI accreditation 123077
CNAS accreditation L0041
CNAL accreditation 0173
NABL accreditation 0025
NABL accreditation T371
PCA accreditation AB274
ACCREDIA accreditation 52

Note: to achieve the above accreditation (eg UKAS, NATA, etc), test houses must demonstrate conformity to the general requirements of EN ISO/IEC 17025.

Analytical Methods Used

ELEMENT			RESULT No. & MI		
	ICP-AES	ICP-MS	FAAS		OTHER
Tin	2-4, 6-10	-	5	1	photometric (phenyl fluorone)
Antimony	2, 3, 5-7, 10-13	-	4, 8, 9, 14	1	photometric (crystal violet)
Bismuth	2, 3, 5-7, 9-13, 15	14	1, 8	4	photometric (iodide)
Copper	1-6, 8-10, 12, 13	-	7, 11, 14-16		
Cadmium	1, 3-9, 14-16	10	2, 11-13		
Silver	1, 3-5, 8, 9, 12, 13	-	2, 6, 7, 10, 11		
Arsenic	2, 3, 5-12, 16	15	1, 4, 13	14	photometric (molybdenum blue)
Nickel	1-3, 5-7, 11-15	4, 16	8-10		
Gold	2-4, 6-8	1, 9	5		
Indium	1, 3-7, 9-11	12	2, 8		
Selenium	1, 3-5, 7-9	2, 10	6		
Tellurium	1-7	8	9		
Zinc	1, 5-9, 11, 13	3, 12	2, 4, 10		
Sodium	3-5, 7-9	2	1, 6		
Thallium	1-12	-	13		
Mercury	1-8	-	-		

Notes

This Certified Reference Material has been produced and certified, wherever possible, in accordance with the requirements of ISO Guide 34-2009, ISO Guide 31-2015 and ISO Guide 35-2006, taking into account the requirements of the ISO Guide to the Expression of Uncertainty in Measurement (GUM).

The unidirectional solidification effects associated with this method of casting have led to the formation of inhomogeneous segregates in the rear portion of the disc. The above certification is therefore only applicable from the front face of the disc, to a depth of 10mm. Material to the rear of the disc, to a depth of ~5mm, is not certified.

This material is liable to superficial corrosion. There is also a possibility for microstructural changes due to recrystallisation, and diffusion effects may lead to the concentration of some elements at the surface. For X-ray and other superficial sampling techniques, it is therefore recommended that the surface is refreshed immediately prior to use. In all other respects, this sample will remain stable indefinitely, provided adequate precautions are taken to protect it from cross-contamination, extremes of temperature and atmospheric moisture.

All production records will be retained for a period of 20 years from the date of this certificate. Technical support for this certification will therefore expire in December 2035, although we reserve the right to make changes as issue revisions, in the intervening period.

This sample is also available in the form of chippings.

The manufacture, analysis and certification of this product were supervised by C Eveleigh, PhD, Technical Director, MBH Analytical Ltd.

The material to which this certificate of analysis refers is supplied subject to our general conditions of sale.